THALES

Air Data Pressure sensor Thales In-service experience

ASE Workshop – September 13th-15th

Alain VERBEKE – Air Data Product Manager Cyprien BROS – In-service Support Manager

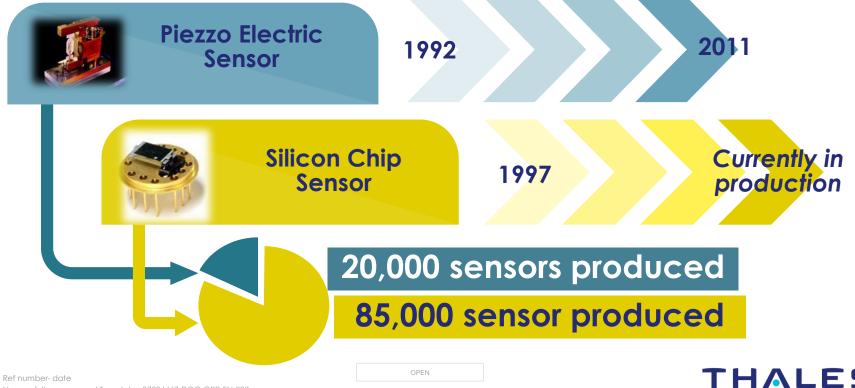
www.thalesgroup.com

OPEN

A range of products for pressure measurements

- Pressure sensor
- Air data processors (ADM, ADC)
- Standby Instrument fitted with standalone pressure sensor

- High accuracy and maturity
- Excellent in-service reliability and stability
- ➤ More than 100,000 sensors in-service for Commercial Aircraft use



Product performance

- Down to +/-0,25 hPa for the operational pressure range (from 100 hPa up to 1400 hPa)
- Corresponds to:
 - > +/- 7 ft at sea level
 - > +/- 27 ft at FL400
- High accuracy pressure manometer used for acceptance test in production and repair shop

Focus on measurement errors

Measurements performed using a « Primary pressure standard »

- Schwien pressure generators considered as « Primary pressure standards » (COFRAC : French Accreditation Organisation)
- Used for: Initial performance, stabilisation process, final calibration
- Accuracy of Schwien pressure generator is pressure dependant
 - > From 0,03 hPa @ low pressure, up to 0,07 hPa for high pressure

Product performance (+/- 0,25 hPa) close to the performance of the highest manometer standard

OPEN

As pressure sensors long term stability is a key player in ASE, it is a main driver in Thales pressure sensor design and production process

Design

- > From piezzo-electric to various silicon chip sensors, design targets long term stability with root cause analysis in design as well as in process
- Accelerated ageing testing on sensors sets are used to validate the design
- In service results are compared to accelerated ageing tests results

Production process

- > Stability monitored during production process for each sensor
- > Final acceptance test in production highlights the stability

- THALES collects in-service data from its worldwide repair network
- These data give an overview of the behavior of suspected ADM, removed from the A/C following a maintenance action

In service experience: Piezzo Electric Sensor

For ADM fitted with Piezzo Electric sensor

- Very good in-service reliability observed
- Some units affected by drift phenomenon
- One of the known root cause responsible for a negative drift of the sensor:
 - loss of vacuum inside the reference cavity
 - reference pressure increases
 - causes a negative misreading (pressure underestimated)
 - can explain A/C flying below the assigned altitude

Most of these drifts occur during the first years of operation: typical value 5 years

- > Phenomenon stabilizes with time
- ➤ Mean drift value: -0,9 hPa (-90ft at FL400)

In service experience: Silicon Chip Sensor

For ADM fitted with Silicon chip sensors

- Reliability greatly enhanced compared to former generations
- Regular design and manufacturing process improvement leading to excellent stability and accuracy
- These sensors are not affected by drift effect
 - Fail safe concept: decrease of vaccuum quality inside the cavity leads to sensor failure (loss of ADM output)
- > Common failure modes observed:
 - Very seldom case of slight decalibration can be observed, not correlated to unit age
 - Decalibration equally distributed between positive and negative values
 - Average decalibration value :
 - Negative : -0,5 hPa (50ft at FL 400)
 - Positive: +0,7 hPa (70ft at FL 400)

THALES

Conclusion

For A/C fitted with last ADM generation, limited number of altimetry system error

- For older A/C, some ADM may need to be removed from the A/C for recalibration in Thales shop
- Once recalibrated, ADM recover its nominal performance and a high level of stability, no other drift is expected